
		Skip to content

	
		

		
			

							

Toggle Navigation			
			

				
				
					Search for:
													
											
				

				
					
									

				
			

			
		

		

	Home
	Interview Questions	JavaScript	Freshers

		
					

							
			
	
		
			
				

																							How to Generate PDF file in Angular 13+ Application in Multiple Ways

											
																		
								Home » How to Generate PDF file in Angular 13+ Application in Multiple Ways
							

											
				

				
			

		

	

						
				

	
					
						
														
					
																																
										View Larger Image
																			
																					

			

						
															How to Generate PDF file in Angular 13+ Application in Multiple Ways
										
				Many times we may want to generate PDF files from the template in an Angular 13+ application. For example, we may create a component for Invoice or price estimation and wants to generate a PDF file based on the component template. We will do that in couple of ways in this tutorial.

For this example, we are using Tailwind CSS and you are free to use any other CSS of your choice. Check this post if you want to know How to Add Tailwind CSS to an Angular 13+ Application

Suppose we create a template for invoice with the following HTML

<div class="max-w-3xl mx-auto px-4 sm:px-6 lg:px-8" id="invoice" #invoice>
 <div class="max-w-3xl mx-auto">
 <div class="flex flex-row justify-between m-2 text-xs">
 <div class=" bg-gray-100 grow m-1 p-3 rounded basis-1/2">
 <h1 class="text-violet-500 text-sm">Invoice from</h1>
 <div class="flex flex-row justify-evenly m-1">
 <div class=" basis-1/4 ">
 <h3>Company</h3>
 </div>
 <div class="basis-3/4">
 <h3>Lorem ipsum dolor sit. </h3>
 </div>
 </div>
 <div class="flex flex-row justify-evenly m-1">
 <div class=" basis-1/4 ">
 <h3>Address </h3>
 </div>
 <div class="basis-3/4">
 <h3> Lorem, ipsum dolor sit amet consectetur adipisicing elit. Modi aut facere magni accusamus
 </h3>
 </div>
 </div>
 </div>
 <div class=" bg-gray-100 grow m-1 p-3 rounded basis-1/2">
 <h1 class="text-violet-500 text-sm">Invoice To</h1>
 <div class="flex flex-row justify-evenly m-1">
 <div class=" basis-1/4 ">
 <h3>Company</h3>
 </div>
 <div class="basis-3/4">
 <h3>Lorem, ipsum dolor. </h3>
 </div>
 </div>
 <div class="flex flex-row justify-evenly m-1">
 <div class=" basis-1/4 ">
 <h3>Address </h3>
 </div>
 <div class="basis-3/4">
 <h3> Lorem, ipsum dolor sit amet consectetur adipisicing elit.
 </h3>
 </div>
 </div>
 </div>
 </div>
 <div class="flex flex-col m-5 text-xs">
 <div class="-my-2 sm:-mx-6 lg:-mx-8">
 <div class="py-2 align-middle inline-block min-w-full sm:px-6 lg:px-8">
 <div class="shadow overflow-hidden border-b border-gray-200 sm:rounded-lg">
 <table class="min-w-full divide-y divide-gray-200">
 <thead class="bg-violet-500">
 <tr>
 <th scope="col"
 class="px-6 py-3 text-left text-xs font-medium text-white uppercase tracking-wider">
 Item No</th>
 <th scope="col"
 class="px-6 py-3 text-left text-xs font-medium text-white uppercase tracking-wider">
 Description</th>
 <th scope="col"
 class="px-6 py-3 text-left text-xs font-medium text-white uppercase tracking-wider">
 Rate</th>
 <th scope="col"
 class="px-6 py-3 text-left text-xs font-medium text-white uppercase tracking-wider">
 Quantity</th>
 <th scope="col"
 class="px-6 py-3 text-left text-xs font-medium text-white uppercase tracking-wider">
 HSN / SAC</th>
 <th scope="col"
 class="px-6 py-3 text-left text-xs font-medium text-white uppercase tracking-wider">
 Amount</th>
 </tr>
 </thead>
 <tbody>
 <tr class="bg-white">
 <td class="px-6 py-4 whitespace-nowrap text-xs font-medium text-gray-900">01</td>
 <td class="px-6 py-4 text-xs text-gray-500 ">Lorem ipsum dolor sit amet.</td>
 <td class="px-6 py-4 whitespace-nowrap text-xs text-gray-500">
 99,60,000</td>
 <td class="px-6 py-4 whitespace-nowrap text-xs text-gray-500">999</td>
 <td class="px-6 py-4 whitespace-nowrap text-right text-xs font-medium">
 999999
 </td>
 <td class="px-6 py-4 whitespace-nowrap text-right text-xs font-medium">
 999999
 </td>
 </tr>
 <tr class="bg-gray-50">
 <td class="px-6 py-4 whitespace-nowrap text-xs font-medium text-gray-900">02</td>
 <td class="px-6 py-4 whitespace-nowrap text-xs text-gray-500">Lorem, ipsum dolor.
 </td>
 <td class="px-6 py-4 whitespace-nowrap text-xs text-gray-500">
 99,60,000</td>
 <td class="px-6 py-4 whitespace-nowrap text-xs text-gray-500">999</td>
 <td class="px-6 py-4 whitespace-nowrap text-right text-xs font-medium">
 888888
 </td>
 <td class="px-6 py-4 whitespace-nowrap text-right text-xs font-medium">
 999999
 </td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
 </div>
 </div>
 </div>
</div>

<button (click)="generatePDF()">Generate</button>

the output for the above HTML with tailwind CSS may look something like this (without button at the bottom)

Pay attention to the font size we have used inside the code. We have used extra small (xs) and small (sm). When you want to convert your HTML to PDF, pay attention to the font size, as the font size that appears in the web page may not be same inside the PDF document.

With the above HTML inside our component, we now want to generate a PDF file that looks same.

Generating PDF in Angular 13+ Application using jsPDF

In this first example, we will generate the PDF file in Angular 13+ application using a package jsPDF.

first let us install the package jsPDF through npm (–save adds this entry to package.json file)

npm install jspdf --save

The jsPDF package depends on html2canvas package for certain functionality, so lets add that

npm i html2canvas --save

Now, we can import them in our component ts file like this

import jsPDF from 'jspdf';
import html2canvas from 'html2canvas';

We can now have the following code in our ts file

import { Component, ElementRef, OnInit, ViewChild } from '@angular/core';
import jsPDF from 'jspdf';
import html2canvas from 'html2canvas';

@Component({
 selector: 'app-generatepdf',
 templateUrl: './generatepdf.component.html',
 styleUrls: ['./generatepdf.component.css']
})
export class GeneratepdfComponent implements OnInit {

 @ViewChild('invoice') invoiceElement!: ElementRef;
 constructor() { }

 ngOnInit(): void {
 }

 public generatePDF(): void {

 html2canvas(this.invoiceElement.nativeElement, { scale: 3 }).then((canvas) => {
 const imageGeneratedFromTemplate = canvas.toDataURL('image/png');
 const fileWidth = 200;
 const generatedImageHeight = (canvas.height * fileWidth) / canvas.width;
 let PDF = new jsPDF('p', 'mm', 'a4',);
 PDF.addImage(imageGeneratedFromTemplate, 'PNG', 0, 5, fileWidth, generatedImageHeight,);
 PDF.html(this.invoiceElement.nativeElement.innerHTML)
 PDF.save('angular-invoice-pdf-demo.pdf');
 });
 }

}

In the above code, we are first accessing the element which we want to generate as PDF using ViewChild.

When the user clicks on the button to generate PDF file, we are first converting the UI of the element into an image using html2canvas package. Pay attention to the value we have given to the scale property which is 3 in the above example. The larger the number, the larger the size of the image generated. Generating image without this option, may result in creating lower size image and subsequently blurred or low quality PDF file. So, use this option as per your requirements.

We are then passing the generated image to the jsPDF class, which simply creates a PDF file with the passed image in it.

With the above code in place, the output of the PDF file generated when the user clicks on the button opened in chrome browser may look like this

Though we can use the above method to generated PDF files, the problems with this method is, the size of the generated PDF file can be big. Another problem is, since we are first creating an image (almost like taking a screen shot of the element UI) and passing to the jsPDF, the text inside the PDF file cannot be selected. If your intended requirement is this and if you are not worried about the size of the file, then you can use this method. One advantage of this method is, it do not consume any bandwidth because we are generating the document at client side.

Another way to generate the PDF document from an Angular application is to generate the file at the server and send it to the client.

Generating PDF in Angular 13+ & Node JS Application using html-pdf-node

How this method works: We need to pass entire HTML along with CSS to the PDF generator package to let it create the PDF file based on the passed HTML & CSS.

If we run the Angular application in normal method, the UI will be created on the client side. In-order to access the entire component HTML and CSS, we need to implement Server Side Rendering (SSR) using Angular Universal. We can do the with the following command

ng add @nguniversal/express-engine

then we can run the application with the following command

npm run dev:ssr

Now, let us create Node JS server with express package to run the server and html-pdf-node package to create PDF file.

const express = require('express');
const app = express();
let fs = require('fs');
let html_to_pdf = require('html-pdf-node');

app.get('/', (req, res) => {
 res.send('Node JS running at port number 3000')
})

app.get('/generate', (req, res) => {
 let options = { format: 'A4', printBackground: true };
 let file = { url: "http://localhost:4200/invoice" };
 html_to_pdf.generatePdf(file, options).then(pdfBuffer => {
 fs.writeFileSync('howtojs-angular-html-pdf-node-demo.pdf', pdfBuffer)
 res.send({ genratedPDFLink: 'link to your generated pdf file to download' })
 });
})

app.listen(3000);

The advantage of using html-pdf-node package is, we can pass a static url and the package gets all the HTML and CSS contents from that url and creates a PDF file. If you want to use any other package to create PDF which accepts HTML, you need to first gets the contents using a package such as request(now deprecated but still very popular) and pass it to the PDF generator package.

In the above example, we are passing http://localhost:4200/invoice url to it. Since the package gets the contents of the entire url, make sure that you are rendering only the HTML and CSS that you want inside the PDF at this url. If you have any navigation bar or footers, even they will be included in the generated PDF file. You can implement the strategy to show only the required HTML and CSS in that url based on your application requirement, for our example, we can hide certain parts of the template based on the url.

In app component ts file, we can access the current page url and check if that is invoice page or not

import { Component } from '@angular/core';
import { NavigationEnd, Router } from '@angular/router'

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 title = 'howtojs.io';
 isInvoicePage: boolean = false;
 constructor(private router: Router) {

 this.router.events.subscribe((event) => {
 if (event instanceof NavigationEnd) {
 let urlSegments = event.url.split('/');
 if (urlSegments[1] == 'invoice') {
 this.isInvoicePage = true;
 } else {
 this.isInvoicePage = false;
 }
 }
 })
 }
}

We can have our template like this

<div *ngIf="!isInvoicePage">
 Home
 Invoice
</div>
<router-outlet></router-outlet>

<button *ngIf="!isInvoicePage" (click)="generatePDF()">Generate PDF</button>

When the user clicks on the button, you can send a http request to the server to create the PDF file

generatePDF() {
 this.httpClient.get('http://localhost:3000/generate').subscribe((data) => {
 console.log(data)
 })
 }

In the example above, the url based on which we are generating the PDF file is public, that means, its accessible to anyone.

There are different ways to secure this url, and one simple way can be like this. You pass a secret token to the server when you send a request to generate the file. Include that token in the url requested from the server. Implement a routing guard to check that token.

Do let us know in the comments below if you want us to show an example for the same.

The size of the PDF file created with the first method was in MB’s (you can lower it by reducing the image clarity passed to jsPDF) . The size of the file with the second method was just around 50KB. You can now pass this newly generated PDF file url to the client in the response to download.

							

												By howtoJS|2022-04-12T16:11:16+00:00April 12th, 2022|Categories: Angular, Code Snippets, Featured, Node JS, Small Tasks|Tags: angular 13 generate pdf file, angular 13 jspdf, angular html-pdf-node, how to generate pdf in angular 13 applications, html-pdf-node, html2canvas, jspdf, jspdf blurred pdf file, jspdf low quality pdf|1 Comment

													
		Share This Article

		FacebookTwitterRedditLinkedInWhatsAppTumblrPinterestEmail

	

														
																						
					
						About the Author: 						howtoJS																	

					
					
						

					

				

										
							
															

							
															

						

					
								
					
					
						Related Posts					

					
					
						

					

				

				
	
	
	
					
		
				
						
							
				 	
	
	

														How to Clear an Input Element in Angular 14+ Application in Multiple Ways
			
								
		
								
								
		
						
	

																							
									How to Clear an Input Element in Angular 14+ Application in Multiple Ways
								

								
									
									August 21st, 2022

																			|
										0 Comments
																	

													

					
	
						
							
				 	
	
	

														How to Set Static & Dynamic Page Titles in Angular 14+ Application
			
								
		
								
								
		
						
	

																							
									How to Set Static & Dynamic Page Titles in Angular 14+ Application
								

								
									
									June 18th, 2022

																			|
										0 Comments
																	

													

					
	
						
							
				 	
	
	

														How to Solve Type ‘string’ is not assignable to type ‘Params’ error working with queryParams in Angular 14
			
								
		
								
								
		
						
	

																							
									How to Solve Type ‘string’ is not assignable to type ‘Params’ error working with queryParams in Angular 14
								

								
									
									June 13th, 2022

																			|
										0 Comments
																	

													

					
	
						
							
				 	
	
	

														How to convert an Observable to a Promise in an Angular 13+ application using RxJS firstValueFrom & lastValueFrom
			
								
		
								
								
		
						
	

																							
									How to convert an Observable to a Promise in an Angular 13+ application using RxJS firstValueFrom & lastValueFrom
								

								
									
									May 26th, 2022

																			|
										0 Comments
																	

													

					
	
						
							
				 	
	
	

														How to Solve Property ‘controls’ does not exist on type ‘AbstractControl’ error in Angular 13+ Applications
			
								
		
								
								
		
						
	

																							
									How to Solve Property ‘controls’ does not exist on type ‘AbstractControl’ error in Angular 13+ Applications
								

								
									
									May 26th, 2022

																			|
										0 Comments
																	

													

					
	
						
							
				 	
	
	

														What is 0308010C:digital envelope routines::unsupported Error ? How to Solve in Angular 13+, React JS, Next JS, Node JS
			
								
		
								
								
		
						
	

																							
									What is 0308010C:digital envelope routines::unsupported Error ? How to Solve in Angular 13+, React JS, Next JS, Node JS
								

								
									
									May 18th, 2022

																			|
										1 Comment
																	

													

					
	
						
							
				 	
	
	

														How to solve “No pipe found with name ‘async'” error in Angular 13
			
								
		
								
								
		
						
	

																							
									How to solve “No pipe found with name ‘async'” error in Angular 13
								

								
									
									May 4th, 2022

																			|
										2 Comments
																	

													

					
	
						
							
				 	
	
	

														How to Solve 404 Not Found Errors On Refresh with Deployed Angular 14+ Application on Node JS, Apache / XAMPP or any other server
			
								
		
								
								
		
						
	

																							
									How to Solve 404 Not Found Errors On Refresh with Deployed Angular 14+ Application on Node JS, Apache / XAMPP or any other server
								

								
									
									April 15th, 2022

																			|
										0 Comments
																	

													

					

						
		

	

													

	
						
					
								One Comment							

					
					
						

					

				

				
			
			
				

				
					
						Giggs
						September 29, 2022 at 9:16 am - Reply					

					
												it is possible to have an example of this code with securate path of pdf

					

				

			

		

			

		
		Leave A Comment Cancel reply
Comment

Save my name, email, and website in this browser for the next time I comment.

	

														
	

											
							
			

				
				
					Search for:
													
											
				

				
					
									

				
			

			
		

		
		
		Recent Posts

			
					How to Clear an Input Element in Angular 14+ Application in Multiple Ways
									
	
					What is new.target in JavaScript & How to Use it ?
									
	
					How to Set Static & Dynamic Page Titles in Angular 14+ Application
									
	
					How to Solve Type ‘string’ is not assignable to type ‘Params’ error working with queryParams in Angular 14
									
	
					How to Iterate through a HTMLCollection or NodeList in JavaScript DOM
									

				
			
					Popular
	Recent
	Comments

			

			

				
					
						
							
																					
												
											

										
										
											How to Add Event Listener to Multiple Elements in JavaScript in Multiple Ways
											
												October 16th, 2021											

										

									
	
																					
												
											

										
										
											How to Select a File on the click of a Button in JavaScript
											
												February 14th, 2022											

										

									
	
																					
												
											

										
										
											How to resolve ERESOLVE unable to resolve dependency tree error
											
												July 15th, 2021											

										

									

					

				
				
					

						
							
																					
												
											

																				
											How to Clear an Input Element in Angular 14+ Application in Multiple Ways
											
												August 21st, 2022											

										

									
	
																					
												
											

																				
											What is new.target in JavaScript & How to Use it ?
											
												July 5th, 2022											

										

									
	
																					
												
											

																				
											How to Set Static & Dynamic Page Titles in Angular 14+ Application
											
												June 18th, 2022											

										

									

					

				
				
					
							
										
											
										

										
																						Arpit Chinmay says:

											
																								Thank you for explaining the cause of the error. Most stack overflow…
											

										

									
	
										
											
										

										
																						Giggs says:

											
																								it is possible to have an example of this code with securate…
											

										

									
	
										
											
										

										
																						Ram says:

											
																								Thank you, I forgot to import common module.
											

										

									

					

							

		

		Tags

allsettled
angular
angular 12
angular copy to clipboard
angular selected image preview
angular small tasks
clipboard api
closures
Code.exe --openssl-legacy-provider is not allowed in NODE_OPTIONS
copy text to clipboard
copy to clipboard
digital envelope routines unsupported
ERR_OSSL_EVP_UNSUPPORTED
es6 modules
eventtarget
filelist
filereader
file selection on button click
html5 video
htmlinputelement
input file preview
javascript image preview
javascript small tasks
MongoNetworkError
mongoose
pass object through datatransfer
password confirm password matching
password strength indicator
promise allsettled
promise race
promises
race
react js selected image preview
reactjs small tasks
react js small tasks
react router dom
selected image preview
show hide password
stop video
strict null check
symbol iterator
tailwind css
unset is not recognized as an internal or external command
viewchild
webpack

			
						
					

				
				
				
								
					

Toggle Navigation

© Copyright 2024 howtoJS | All Rights Reserved

					
											

												

		

		

		

		

		

		
			
		
					

				
						

			
		
			Go to Top
		
	

		